STEREOSCOPIC PARALLAX

Center for Photogrammetric Training Ferris State University

PARALLAX

- Apparent shift in the position of an object, with respect to a frame of reference, caused by a shift in the position of observation
- Change in position of an image from one photo to the next is caused by aircraft's motion
- Called stereoscopic parallax, x parallax, or simply parallax
- Two important aspects of stereoscopic parallax
- Parallax of any point is directly related to the elevation of the point
- Parallax is greater for high points than for low points

STEREOSCOPIC PARALLAX

$$
P_{a}=x_{a}-x_{a}^{\prime}
$$

STEREOSCOPIC PARALLAX

- Parallax measured in flight-line axis system

MONOSCOPIC PARALLAX MEASUREMENT

- Mark conjugate principal points
- Align flight line axis
- Parallax: $\mathrm{p}_{\mathrm{b}}=\mathrm{D}-\mathrm{d}_{\mathrm{b}}$

PRINCIPLE OF FLOATING MARK

- When viewing in stereo, 2 small identical marks etched on clear glass
- Called half marks
- Half marks shifted until they fuse into single mark
- If marks moved closer together, they appear to rise
- If moved apart, marks appear to fall
- Spacing of half marks, hence their parallax, varied so floating marks appears to rest exactly on terrain

PARALLAX OF PRINCIPAL POINT

- Parallax of left ground principal point is photo base b' measured on right photo, and the parallax of right ground principal point is photo base b measured on left photo
- For moderate relief, $\mathrm{b} \approx \mathrm{b}$ '
- Photo base is average of two values

STEREOSCOPIC PARALLAX MEASUREMENT

STEREOSCOPIC PARALLAX MEASUREMENT

- Parallax bar measurement

$$
p_{a}=x_{a}-x_{a}^{\prime}=D-\left(K-r_{a}\right)=(D-K)+r_{a}
$$

- Substituting parallax bar constant C

$$
\mathrm{p}_{\mathrm{a}}=\mathrm{C}+\mathrm{r}_{\mathrm{a}}
$$

- To compute C, measure parallax monoscipically and take micrometer reading

$$
C=p-r
$$

DEVELOPMENT OF PARALLAX EQUATIONS

DEVELOPMENT OF PARALLAX EQUATIONS

- Triangles LOW and Low, write scale:

$$
\frac{L o}{L O}=\frac{L W}{L W}=\frac{o w}{O W} \Rightarrow \frac{f}{H-h}=\frac{x}{X}
$$

- From triangles Lwp and LWP, write scale:

$$
\frac{L w}{L W}=\frac{W P}{W P}=\frac{f}{H-h}=\frac{y}{Y}
$$

DEVELOPMENT OF PARALLAX EQUATIONS

- Using triangles L'O'W, L'o'w', L'w'p', L'WP

$$
\frac{L^{\prime} o^{\prime}}{L^{\prime} O^{\prime}}=\frac{L^{\prime} w^{\prime}}{L^{\prime} W}=\frac{w^{\prime} p^{\prime}}{W P}=\frac{y^{\prime}}{Y} \Rightarrow \frac{y^{\prime}}{Y}=\frac{f}{H-h}
$$

- From last two relationships:

$$
\frac{\mathrm{y}}{\mathrm{Y}}=\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}} \quad \frac{\mathrm{y}^{\prime}}{\mathrm{Y}}=\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}}
$$

- Yielding:

$$
\mathrm{y}=\mathrm{y}^{\prime}
$$

DEVELOPMENT OF PARALLAX EQUATIONS

- In triangles LWL' \& Lww'
- LL' is parallel to ww'
- LW is parallel to Lw
- L'W is parallel to Lw'
- The two triangles are similar triangles
- Corresponding altitudes are (H - h) and f

DEVELOPMENT OF PARALLAX EQUATIONS

- From similar triangles

$$
\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}}=\frac{\mathrm{ww}}{} \mathrm{~B}
$$

- Since

$$
\mathrm{ww}^{\prime}=\mathrm{x}-\mathrm{x}^{\prime}=\mathrm{p}
$$

- then

$$
\frac{f}{H-h}=\frac{p}{B}
$$

DEVELOPMENT OF

PARALLAX EQUATIONS

- The $\mathrm{H}-\mathrm{h}=\frac{\mathrm{B}}{\mathrm{p}} \mathrm{f} \Rightarrow \mathrm{h}=\mathrm{H}-\frac{\mathrm{Bf}}{\mathrm{p}}$ equations are:

$$
\begin{aligned}
& X=\frac{B}{p} x \\
& Y=\frac{B}{p} y
\end{aligned}
$$

PARALLAX EQUATIONS

- Valid for
- Truly vertical photographs only
- Photos taken from same flying height
- Coordinates ($x, y, x^{\prime}, y^{\prime}$) related to flight line axis system
- Ground coordinates not related to true ground coordinates but to the coordinate system of the stereopair

ELEVATION BY PARALLAX DIFFERENCES

ELEVATION BY PARALLAX DIFFERENCES

- Recall parallax formula:

$$
\mathrm{h}=\mathrm{H}-\frac{\mathrm{Bf}}{\mathrm{p}}
$$

- Rearrange for points a and c

$$
\mathrm{p}_{\mathrm{c}}=\frac{\mathrm{fB}}{\mathrm{H}-\mathrm{h}_{\mathrm{C}}} \quad \mathrm{p}_{\mathrm{a}}=\frac{\mathrm{fB}}{\mathrm{H}-\mathrm{h}_{\mathrm{A}}}
$$

ELEVATION BY

 PARALLAX DIFFERENCESParallax $\Delta \mathrm{p}=\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{c}}$
difference:

$$
\begin{aligned}
& =\frac{\mathrm{fB}}{\mathrm{H}-\mathrm{h}_{\mathrm{A}}}-\frac{\mathrm{fB}}{\mathrm{H}-\mathrm{h}_{\mathrm{C}}} \\
& =\frac{\mathrm{fB}\left(\mathrm{H}-\mathrm{h}_{\mathrm{C}}\right)-\mathrm{fB}\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right)}{\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right)\left(\mathrm{H}-\mathrm{h}_{\mathrm{C}}\right)} \\
& =\frac{\mathrm{fB}\left(\mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{C}}\right)}{\left(\mathrm{H}-\mathrm{h}_{\mathrm{A}}\right)\left(\mathrm{H}-\mathrm{h}_{\mathrm{C}}\right)}
\end{aligned}
$$

ELEVATION BY

 PARALLAX DIFFERENCES$\begin{aligned} & \text { - Substituting parallax } \\ & \text { formula for flying } \\ & \text { height above the }\end{aligned} \quad \Delta p=\frac{f B\left(h_{A}-h_{C}\right)}{\left(\mathrm{fB} / \mathrm{p}_{\mathrm{a}}\right)\left(\mathrm{H}-\mathrm{h}_{\mathrm{C}}\right)}$ height above the terrain

$$
=\frac{\mathrm{p}_{\mathrm{a}}\left(\mathrm{~h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{c}}\right)}{\mathrm{H}-\mathrm{h}_{\mathrm{C}}}
$$

- From which $h_{A}=h_{C}+\frac{\Delta p\left(H-h_{C}\right)}{p_{a}}$

ELEVATION BY

 PARALLAX DIFFERENCES- Alternative development

$$
\begin{aligned}
\Delta \mathrm{h} & =\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{C}} \\
& =\left(\mathrm{H}-\frac{\mathrm{Bf}}{\mathrm{p}_{\mathrm{a}}}\right)-\left(\mathrm{H}-\frac{\mathrm{Bf}}{\mathrm{p}_{\mathrm{c}}}\right) \\
& =\frac{\mathrm{Bf} \Delta \mathrm{p}}{\mathrm{p}_{\mathrm{c}}\left(\mathrm{p}_{\mathrm{c}}+\Delta \mathrm{p}\right)}
\end{aligned}
$$

ELEVATION BY

 PARALLAX DIFFERENCES- Since ground principal points lie on same datum

$$
\mathrm{O}_{1} \mathrm{O}_{2}=\mathrm{o}_{1}^{\prime} \mathrm{o}_{2}^{\prime}=\mathrm{b}
$$

- Since $\mathrm{O}_{1}, \mathrm{O}_{2}$ and C lie at same elevation, their parallaxes are the same

$$
\mathrm{p}_{\mathrm{c}}=\mathrm{b}
$$

ELEVATION BY

 PARALLAX DIFFERENCES- From figure

$$
\frac{\mathrm{b}}{\mathrm{~B}}=\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}_{\mathrm{C}}}
$$

- From which

$$
\mathrm{B}=\frac{\left(\mathrm{H}-\mathrm{h}_{\mathrm{C}}\right) \mathrm{b}}{\mathrm{f}}
$$

ELEVATION BY

 PARALLAX DIFFERENCES- Substitute in elevation difference formula and recognizing that $p_{c}=b$

$$
\Delta \mathrm{h}=\frac{\left(\mathrm{H}-\mathrm{h}_{\mathrm{C}}\right) \Delta \mathrm{p}}{\mathrm{~b}+\Delta \mathrm{p}}
$$

ERROR EVALUATION

- Some sources of errors
- Locating and marking flight lines
- Orienting stereopairs for parallax measurements
- Parallax and photo coordinate measurements
- Shrinkage or expansion of photos
- Unequal flying heights
- Tilted photographs
- Errors in ground control
- Other errors: camera lens distortion, atmospheric refraction distortion

ERROR EVALUATION

- General approach - differentiate equation
- Example for basic parallax equations

$$
\begin{gathered}
\mathrm{h}=\mathrm{H}-\frac{\mathrm{Bf}}{\mathrm{p}} \\
\frac{\partial \mathrm{~h}}{\partial \mathrm{H}}=1 \quad ; \quad \frac{\partial \mathrm{h}}{\partial \mathrm{~B}}=-\frac{\mathrm{f}}{\mathrm{p}} \quad ; \quad \frac{\partial \mathrm{h}}{\partial \mathrm{p}}=\frac{\mathrm{Bf}}{\mathrm{p}^{2}}
\end{gathered}
$$

