

MONOSCOPIC PARALLAX MEASUREMENT

- Mark conjugate principal points
- Align flight line axis
- Parallax: $p_b = D d_b$

STEREOSCOPIC PARALLAX MEASUREMENT

• Parallax bar measurement

$$p_a = x_a - x'_a = D - (K - r_a) = (D - K) + r_a$$

• Substituting parallax bar constant C

$$p_a = C + r_a$$

 To compute C, measure parallax monoscipically and take micrometer reading

$$C = p - r$$

• From triangles Lwp and LWP, write scale: $\frac{Lw}{LW} = \frac{wp}{WP} = \frac{f}{H-h} = \frac{y}{Y}$

DEVELOPMENT OF PARALLAX EQUATIONS

- In triangles LWL' & Lww'
 - LL' is parallel to ww'
 - LW is parallel to Lw
 - L'W is parallel to Lw'
 - The two triangles are similar triangles
 - Corresponding altitudes are (H h) and f

ELEVATION BY PARALLAX DIFFERENCES

• Alternative development

$$\Delta h = h_{A} - h_{C}$$

$$= \left(H - \frac{Bf}{p_{a}}\right) - \left(H - \frac{Bf}{p_{c}}\right)$$

$$= \frac{Bf\Delta p}{p_{c}(p_{c} + \Delta p)}$$

ERROR EVALUATION

- Some sources of errors
 - Locating and marking flight lines
 - Orienting stereopairs for parallax measurements
 - Parallax and photo coordinate measurements
 - Shrinkage or expansion of photos
 - Unequal flying heights
 - Tilted photographs
 - Errors in ground control
 - Other errors: camera lens distortion, atmospheric refraction distortion

